about icon-addNote android4 Answer apple4 icon-appStoreEN icon-appStoreES icon-appStorePT icon-appStoreRU Imported Layers Copy 7 icon-arrow-spined icon-ask icon-attention icon-bubble-blue icon-bubble-red ButtonError ButtonLoader ButtonOk icon-cake icon-camera icon-card-add icon-card-calendar icon-card-remove icon-card-sort chrome-extension-ru chrome-extension-es-mx chrome-extension-pt-br chrome-extension-ru comment comment icon-cop-cut icon-cop-star Cross Dislike icon-editPen icon-entrance icon-errorBig facebook flag flag_vector icon-globe icon-googlePlayEN icon-googlePlayRU icon-greyLoader icon-cake Heart 4EB021E9-B441-4209-A542-9E882D3252DE Created with sketchtool. Info Kebab icon-lamp icon-lampBig icon-learnHat icon-learning-hat Dislike Loup Loup icon-more icon-note icon-notifications icon-pen Pencil icon-play icon-plus-light icon-plus icon-rosie-cut Rune scrollUp Share-icon Shevron-Down Shevron Left Shevron Right sound sound1 sound2 sound3 sound4 sound2 icon-star Swap icon-translate Trash icon-tutor-ellipsis icon-tutor-flip Tutor folder icon icon-tutor-learned icon-twoWayArrow Mezhdunarodny_logotip_VK vk icon-word pen_icon Logo Logo Logo
without examplesFound in 1 dictionary

Physics
  • Contains about 76,000 terms from all the fields of modern physics, classical and innovative alike.

general integral

общий интеграл

Examples from texts

For the general integral /RD_1~~FdR, the condition of convergence at infinity is clearly D<F. And the condition of convergence at the origin is D>F.
Для общего интеграла f Рв~г~р dR условие сходимости в бесконечности очевидно: Р < Р. Условие же сходимости в начале координат имеет вид Р > Р.
Mandelbrot, Benoit / The Fractal Geometry of NatureМандельброт, Бенуа / Фрактальная геометрия природы
Фрактальная геометрия природы
Мандельброт, Бенуа
© Б. Мандельброт, 2002
© Перевод на русский язык, Институт компьютерных исследований, 2002
The Fractal Geometry of Nature
Mandelbrot, Benoit
© 1977, 1982, 1983 by Benoit B. Mandelbrot
Ve shall now define the integral for general point set
Мы определим теперь интеграл для произвольного множества точек
Bochner, Salomon / Lectures on Fourier IntegralsБохнер, С. / Лекции об интегралах Фурье
Лекции об интегралах Фурье
Бохнер, С.
© "Государственное издательство физико-математической литературы", 1962
Lectures on Fourier Integrals
Bochner, Salomon
© 1959, by Princeton University Press

Add to my dictionary

general integral
общий интеграл

User translations

No translations for this text yet.
Be the first to translate it!